В общем случае производительность процессора тем выше чем больше


Принцип построения компьютера

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между модулями.

Обмен информацией между отдельными устройствами компьютера производится по трем многоразрядным шинам (многопроводным линиям), соединяющим все модули: шине данных, шине адресов и шине управления.

Разрядность шины данных связана с разрядностью процессора (имеются 8-, 16-, 32-, 64-разрядные процессоры).

Данные по шине данных могут передаваться от процессора к какому-либо устройству, либо, наоборот, от устройства к процессору, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины данных можно отнести следующие: запись/чтение данных из оперативной памяти, запись/чтение данных из внешней памяти, чтение данных с устройства ввода, пересылка данных на устройство вывода.

Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для оперативной памяти код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам, т. е. шина адреса является однонаправленной.

Разрядность шины адреса определяет объезд адресуемой процессором памяти. Имеются 16-, 20-, 24- и 32-разрядные шины адреса.

Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются.

В первых отечественных персональных компьютерах величина адресного пространства была иногда меньше, чем величина реально установленной в компьютере оперативной памяти. Обеспечение доступа к такой памяти происходило на основе поочередного (так называемого постраничного) подключения дополнительных блоков памяти к адресному пространству.

В современных персональных компьютерах с 32-разрядной шиной адреса величина адресуемой памяти составляет 4 Гб, а величина фактически установленной оперативной памяти значительно меньше и составляет обычно 16 или 32 Мб.

По шине управления передаются сигналы, определяющие характер обмена информацией (ввод/вывод), и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией.

Аппаратно на системных платах реализуются шины различных типов. В компьютерах РС/286 использовалась шина ISA (Industry Standard Architecture), имевшая 16-разрядную шину данных и 24-разрядную шину адреса. В компьютерах РС/386 и РС/486 используется шина EISA (Extended Industry Standard Architecture), имеющая 32-разрядные шины данных и адреса. В компьютерах PC/ Pentium используется шина PCI (Peripheral Component Interconnect), имеющая 64-разрядную шину данных и 32-разрядную шину адреса.

Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, адаптеров устройств (видеоадаптер, контроллер жестких дисков и т. д.), а на программном уровне обеспечивается загрузкой в оперативную память драйверов устройств, которые обычно входят в состав операционной системы.

Контроллер жестких дисков обычно находится на системной плате. Существуют различные типы контроллеров жестких дисков, которые различаются по количеству подключаемых дисков, скорости обмена информацией, максимальной емкости диска и др.

IDE — Integrated Device Electronics EIDE — Enhanced Integrated Device Electronics SCSI — Small Computers System Interface В стандартный набор контроллеров, разъемы которых имеются на* системном блоке компьютера, обычно входят:

— видеоадаптер (с помощью него обычно подключается дисплей);

— последовательный порт СОМ1 (с помощью него обычно подключается мышь);

— последовательный порт COM2 (с помощью него обычно подключается модем);

— параллельный порт (с помощью него обычно подключается принтер);

— контроллер клавиатуры.

Через последовательный порт единовременно может передаваться 1 бит данных в одном направлении, причем данные от процессора к периферийному устройству и в обратную сторону, от периферийного устройства к процессору, передаются по разным проводам. Максимальная дальность передачи составляет обычно несколько десятков метров, а скорость до 115 200 бод. Устройства подключаются к этому порту через стандартный разъем RS-232.

Через параллельный порт может передаваться в одном направлении одновременно 8 бит данных. К этому порту устройства подключаются через разъем Centronics. Максимальное удаление принимающего устройства обычно не должно превышать 3 м.

Подключение других периферийных устройств требует установки в компьютер дополнительных адаптеров (плат).

(разрядность, адресное пространство и др.) процессора компьютера.

Процессор компьютера предназначен для обработки информации. Каждый процессор имеет определенный набор базовых операций (команд), например, одной из таких операций является операция сложения двоичных чисел.

Технически процессор реализуется на большой интегральной схеме, структура которой постоянно усложняется, и количество функциональных элементов (типа диод или транзистор) на ней постоянно возрастает (от 30 тысяч в процессоре 8086 до 5 миллионов в процессоре Pentium II).

Важнейшей характеристикой процессора, определяющей его быстродействие, является его тактовая частота. От нее, в частности, зависит количество базовых операций, которые производит процессор в секунду. За 20 лет тактовая частота процессора увеличилась почти на два порядка от 4 МГц (процессор 8086, 1978 г.) до 300 МГц (процессор Pentium II, 1997г.).

Другой характеристикой процессора, влияющей на его производительность, является разрядность. В общем случае производительность процессора тем выше, чем больше его разрядность. В настоящее время используются 8-, 16-, 32- и 64-разрядные процессоры, причем практически все современные программы рассчитаны на 32- и 64-разрядные процессоры.

Часто уточняют разрядность процессора и пишут, например, 16/20, что означает, что процессор имеет 16-разрядную шину данных и 20-разрядную шину адреса. Разрядность адресной шины определяет адресное пространство процессора, т. е. максимальный объем оперативной памяти, который может быть установлен в компьютере.

В первом отечественном персональном компьютере «Агат» (1985 г.) был установлен процессор, имевший разрядность 8/16, соответственно его адресное пространство составляло 64 Кб. Современный процессор Pentium II имеет разрядность 64/32, т.е. его адресное пространство составляет 4 Гб.

Производительность процессора является интегральной характеристикой, которая зависит от частоты процессора, его разрядности, а также особенностей архитектуры (наличие кэш-памяти и др.). Производительность процессора нельзя вычислить, она определяется в процессе тестирования, т. е. определения скорости выполнения процессором определенных операций в какой-либо программной среде.

Увеличение производительности процессоров может достигаться различными путями. В частности, за счет введения дополнительных базовых операций. Так, в процессорах Pentium MMX достигается большая производительность при работе с мультимедиа-приложениями (программами для обработки графики, видео и звука).

Организация и основные характеристики памяти компьютера.

Большое количество программ и данных, необходимых пользователю, долговременно хранятся во внешней памяти компьютера (на гибких и жестких магнитных дисках, CD-ROM и др.). В оперативную память компьютера загружаются те программы и данные, которые необходимы в данный момент.

По мере усложнения программ и увеличения их функций, а также появления мультимедиа-приложений растет информационный объем программ и данных. Если в середине 80-х годов обычный объем программ и данных составлял десятки и лишь иногда сотни килобайт, то в середине 90-х годов он стал составлять мегабайты и десятки мегабайт. Соответственно растет объем оперативной памяти. В школьном компьютере БК-0010 (1986 г.) объем оперативной памяти составлял 64 Кб, в современных персональных компьютерах он обычно составляет 16 Мбайт и более.

Логически оперативная память разделена на ячейки объемом 1. байт. Соответственно оперативная память 64 Кб содержит 65 536 ячеек, а память 16 Мб содержит 16 777 216 ячеек.

Каждая ячейка имеет свой уникальный двоичный адрес. При необходимости проведения операции считывания/записи данных из данной ячейки адрес ячейки передается от процессора к оперативной памяти по адресной шине.

Разрядность шины адреса определяет объем адресуемой памяти процессора и, соответственно, максимальный объем оперативной памяти, которую можно непосредственно использовать. Разрядность шины адреса у большинства современных персональных компьютеров составляет 32 разряда, т. е. максимальный объем оперативной памяти может составлять 2в32 = 4 Гб.

Величина аппаратно установленной оперативной памяти в современных рабочих станциях обычно составляет 16 или 32 Мб, а в серверах 64 или 128 Мб. Таким образом, имеется возможность наращивания объема оперативной памяти компьютеров без увеличения разрядности шины адреса процессора.

Физически оперативная память изготавливается в виде БИС (больших интегральных схем) различных типов (SIMM, DIMM), имеющих различную информационную емкость (1,4, 8, 16, 32 Мб). Различные системные платы имеют различные наборы разъемов для модулей оперативной памяти.

Модули оперативной памяти характеризуются временем доступа к информации (считывания/записи данных). В современных модулях типа SIMM время доступа обычно составляет 60 не, в модулях типа DIMM — 10 не.

Различные операционные системы используют различные способы организации оперативной памяти. В школьных компьютерах с 16-разрядной шиной адреса и, соответственно, максимально с 64 Кб адресуемой памяти («Агат», «YAMAHA») реализовывался принцип поочередного (так называемого постраничного) подключения дополнительных блоков физической памяти к адресному пространству процессора. Таким образом, удавалось увеличить объем оперативной памяти таких компьютеров до 128 Кб и более.

Операционная система MS-DOS создает сложную логическую структуру оперативной памяти:

• основная (conventional) память занимает адресное пространство от 0 до 640 Кб, в нее загружаются операционная система, программы и данные;

• верхняя память (UMB — Upper Memory Blocks) занимает адресное пространство от 640 Кб до 1 Мб, в нее могут быть загружены драйверы устройств;

• высокая (high) память начинается после 1 Мб и имеет объем 64 Кб, в нее может быть частично загружена операционная система;

память, которая располагается в адресном пространстве «выше» высокой памяти, может использоваться в качестве расширенной памяти или дополнительной памяти; однако память остается недоступной для программ и данных. Таким образом, под управлением операционной системы MS-DOS аппаратно установленная оперативная память используется очень нерационально. Этот недостаток преодолен в операционной системе Windows, в которой используется простая неструктурированная модель памяти и вся память доступна для загрузки программ и данных.

Внешняя память компьютера. Носители информации (гибкие и жесткие диски, CD-ROM-диски).

Основное назначение внешней памяти компьютера — долговременное хранение большого количества различных файлов (программ, данных и т. д.). Устройство, которое обеспечивает запись/считывание информации, называется накопителем, а хранится информация на носителях. Наиболее распространенными являются накопители следующих типов:

— накопители на гибких магнитных дисках (НГМД) двух различных типов, рассчитанные на диски диаметром 5,25" (емкость 1,2 Мб) и диски диаметром 3,5" (емкость 1,44 Мб);

— накопители на жестких магнитных дисках (НЖМД) информационной емкостью от 1 до 8 Гб;

— накопители CD-ROM для CD-ROM-дисков емкостью 640 Мб.

Для пользователя имеют существенное значение некоторые технико-экономические показатели: информационная емкость, скорость обмена информацией, надежность ее хранения и, наконец, стоимость накопителя и носителей к нему (см. таблицу).

В основу записи, хранения и считывания информации положены два физических принципа, магнитный и оптический. В НГМД и НЖМД используется магнитный принцип. При магнитном способе запись информации производится на магнитный носитель (диск, покрытый ферромагнитным лаком) с помощью магнитных головок.

В процессе записи головка с сердечником из маг-нитомягкого материала (малая остаточная намагниченность) перемещается вдоль магнитного слоя магнитожесткого носителя (большая остаточная намагниченность). Электрические импульсы создают в головке магнитное поле, которое последовательно намагничивает (1) или не намагничивает (О) элементы носителя.

При считывании информации намагниченные участки носителя вызывают в магнитной головке импульс тока (явление электромагнитной индукции).Носители информации имеют форму диска и помещаются в конверт из плотной бумаги (5,25") или пластмассовый корпус (3,5"). В центре диска имеется отверстие (или приспособление для захвата) для обеспечения вращения диска в дисководе, которое производится с постоянной угловой скоростью 300 об/с.

В защитном конверте (корпусе) имеется продолговатое отверстие, через которое производится запись/считывание информации. На боковой кромке дискет (5,25") находится маленький вырез, позволяющий производить запись, если вырез заклеить непрозрачной наклейкой, запись становится невозможной (диск защищен). В дискетах 3,5" защиту от записи обеспечивает предохранительная защелка в левом нижнем углу пластмассового корпуса.

Диск должен быть форматирован, т. е. должна быть создана физическая и логическая структура диска. В процессе форматирования на диске образуются концентрические дорожки, которые делятся на сектора, для этого головка дисковода расставляет в определенных местах диска метки дорожек и секторов.

Например, на гибком диске формата 3,5":

• размер сектора — 512 байт;

• количество секторов на дорожке — 18;

• дорожек на одной стороне — 80;

• сторон — 2.

Жесткие магнитные диски состоят из нескольких дисков, размещенных на одной оси и вращающихся с большой угловой скоростью (несколько тысяч оборотов в минуту), заключенных в металлический корпус. Большая информационная емкость жестких дисков достигается за счет увеличения количества дорожек на каждом диске до нескольких тысяч, а количества секторов на дорожке — до нескольких десятков. Большая угловая скорость вращения дисков позволяет достигать высокой скорости считывания/записи информации (более 5 Мб/с).

CD-ROM-накопители используют оптический принцип чтения информации. Информация на CD-ROM-диске записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося CD-ROM-диска, интенсивность отраженного луча соответствует значениям 0 или 1. С помощью фотопреобразователя они преобразуются в последовательности электрических импульсов,

Скорость считывания информации в CD-ROM -накопителе зависит от скорости вращения диска. Первые CD-ROM-накопители были односкоростны-ми и обеспечивали скорость считывания информации 150 Кб/с, в настоящее время все большее распространение получают 24-скоростные CD-ROM-накопители, которые обеспечивают скорость считывания информации до 3,6 Мб/с.

Информационная емкость CD-ROM-диска может достигать 640 Мб. Производятся CD-ROM-диски либо путем штамповки (диски белого цвета), либо записываются (диски желтого цвета) на специальных устройствах, которые называются CD-recorder.

Операционная система компьютера (назначение, состав, загрузка).

Операционная система является базовой и необходимой составляющей программного обеспечения компьютера (software). Операционная система обеспечивает управление всеми аппаратными компонентами компьютера (hardware). Другими словами, операционная система обеспечивает функционирование и взаимосвязь всех компонентов компьютера, а также предоставляет пользователю доступ к его аппаратным возможностям. К системному блоку компьютера подключаются через специальные согласующие платы (контроллеры) периферийные устройства (дисковод, принтер и т. д.). Каждое периферийное устройство обрабатывает информацию по-разному и с различной скоростью, поэтому необходимо программно согласовать их работу с работой процессора. Для этого в составе операционной системы имеются специальные программы — драйверы устройств. Каждому устройству соответствует свой драйвер.

Процесс работы компьютера в определенном смысле сводится к обмену файлами между периферийными устройствами, т. е. необходимо уметь управлять файловой системой. Ядром операционной системы является программа, которая обеспечивает управление файловой системой.

Пользователь общается с компьютером через устройства ввода информации (клавиатура, мышь). После ввода команды операционной системы специальная программа, которая называется командный процессор, расшифровывает команды и исполняет их.

Процесс общения пользователя с компьютером должен быть удобным. В состав современных операционных систем (Windows) обязательно входят модули, создающие графический интерфейс.

Таким образом, в структуру операционной системы входят следующие модули:

• базовый модуль, управляющий файловой системой;

• командный процессор, расшифровывающий и выполняющий команды;

• драйверы периферийных устройств;

• модули, обеспечивающие графический интерфейс.

Файлы операционной системы находятся на диске (жестком или гибком). Однако программы могут выполняться, только если они находятся в оперативной памяти, поэтому файлы операционной системы необходимо загрузить в оперативную память. Все файлы операционной системы не могут одновременно находиться в оперативной памяти, так как объем современных операционных систем составляет десятки мегабайт. Для функционирования компьютера обязательно должны находиться в оперативной памяти базовый модуль, командный процессор и драйверы подключенных устройств. Модули операционной системы, обеспечивающие графический интерфейс, могут быть загружены по желанию пользователя. В операционной системе Windows 95 выбор варианта загрузки представлен в виде меню.

После включения компьютера производится загрузка операционной системы в оперативную память, т. е. выполняется программа загрузки. Однако для того чтобы компьютер выполнял какую-нибудь программу, эта программа должна уже находиться в оперативной памяти. Выход из этого противоречия состоит в последовательной, поэтапной загрузке.

В соответствии с английским названием этого процесса — bootstrap, — система как бы «поднимет себя за шнурки ботинок». В системном блоке компьютера находится ПЗУ (BIOS), в котором содержатся программы тестирования компьютера и первого этапа загрузки операционной системы. После включения компьютера эти программы начинают выполйяться, причем информация о ходе этого процесса высвечивается на экране дисплея.

На этом этапе процессор обращается к диску и ищет на определенном месте (в начале диска) наличие очень небольшой программы-загрузчика BOOT. Программа-загрузчик считывается в память, и ей передается управление. В свою очередь она ищет на диске базовый модуль операционной системы, загружает его в память и передает ему управление.

В состав базового модуля операционной системы входит основной загрузчик, который ищет остальные модули операционной системы и загружает их в оперативную память.

В случае, если в дисковод вставлен несистемный диск или диск вообще отсутствует, на экране дисплея появляется соответствующее сообщение.

Вышеописанная процедура запускается автоматически при включении питания компьютера (так называемый «холодный» старт), однако часто используется процедура «перезагрузки» операционной системы («горячий» старт), которая происходит по нажатию на кнопку RESET или одновременного нажатия на клавиши + +местоположение).

Работа с файлами.

Работа на персональном компьютере в среде операционной системы фактически сводится к работе с файлами. В операционной системе Windows 95 понятие файл часто заменяется понятием документ. Файлы создаются, записываются на диск, хранятся и считываются с него, распечатываются на принтере, пересылаются по информационным сетям и т. д.

Строгое определение понятию файла дать достаточно сложно. В первом приближении можно сказать, что файл — это определенное количество информации, хранящееся на диске и имеющее имя. Рассмотрим это определение более подробно.

Информация на диске записана на концентрических дорожках, которые разбиты на секторы. Сектор является минимальным адресуемым элементом информации на диске. На гибком диске объем одного сектора составляет 512 байт, на жестких дисках его величина больше.

Файл хранится на диске. Следовательно, минимальный объем файла равен одному сектору. Максимальный объем файла равен, естественно, информационному объему диска. Объем реальных файлов обычно не превышает нескольких мегабайт.

Файл имеет имя. Например, полное имя файла proba.txt состоит из имени файла (proba) и типа файла, его расширения (txt). В операционной системе MS-DOS имя файла может содержать до 8 букв латинского алфавита, цифр и некоторых специальных символов. Операционная система Windows 95 поддерживает также длинные имена файлов (документов), которые могут содержать до 255 символов, причем разрешается использовать буквы русского алфавита. Имя файлу дается его создателем (пользователем, программистом).

Тип файла необходим операционной системе компьютера для того, чтобы определить, с помощью какой прикладной программы этот файл был создан и, соответственно, какую программу необходимо вызвать для его обработки. Тип файла задается прикладной программой, в которой он создается, с помощью трех символов, отделенных от имени точкой. Так, в Windows файлы, созданные текстовым редактором Word, имеют расширение DOC, Web-страницы Internet имеют расширение НТМ и т. д.

Современные жесткие диски имеют информационную емкость в 1 Гб и более, на них могут храниться тысячи и десятки тысяч файлов. Каждый диск имеет логическое имя (А, В — гибкие диски, С, D и т. д. — жесткие диски, оптические диски и т. п.). Для удобства поиска файлы хранятся в иерархической структуре каталогов, которая имеет «древовидную» структуру. Из корневого каталога можно перейти в каталоги 1-го уровня, в свою очередь, из них в каталоги 2-го уровня и т. д. В каталогах всех уровней могут храниться файлы.

Пусть на жестком диске С в корневом каталоге имеются два каталога 1-го уровня (GAMES, TEXT) и один каталог 2-го уровня (CHESS). Как найти имеющиеся файлы (chess.exe, proba.txt)? Для этого необходимо указать путь к файлу. В путь файла входит имя диска и последовательность имен каталогов, т. е. пути к вышеперечисленным файлам соответственно будут:

C:GAMESCHESSchess.exe

C:TEXTproba.txt

В операционной системе MS-DOS операции с файлами (копирование, удаление, переименование, печать и т. д.) можно производить непосредственно из командной строки с помощью команд (copy, delete, rename, print). Однако это неудобно для пользователя, так как требует запоминания форматов команд операционной системы. Для работы с файлами обычно используется программная оболочка Norton Commander, которая представляет пользователю удобные возможности поиска файлов и операций над ними с помощью функциональных клавиш и мыши.

В операционной системе Windows операции с файлами можно производить с помощью мыши с использованием технологии «возьми и перенеси».

Информационная деятельность человека.

В современном мире роль информатики, средств обработки, передачи, накопления информации неизмеримо возросла. Средства информатики и вычислительной техники сейчас во многом определяют научно-технический потенциал страны, уровень развития ее народного хозяйства, образ жизни и деятельности человека.

Для целенаправленного использования информации ее необходимо собирать, преобразовывать, передавать, накапливать и систематизировать. Все эти процессы, связанные с определенными операциями над информацией, будем называть информационными процессами. Получение и преобразование информации является необходимым условием жизнедеятельности любого организма. Даже простейшие одноклеточные организмы постоянно воспринимают и используют информацию, например о температуре и химическом составе среды для выбора наиболее благоприятных условий существования. Живые существа способны не только воспринимать информацию из окружающей среды с помощью органов чувств, но и обмениваться ею между собой.

Человек также воспринимает информацию с помощью органов чувств, а для обмена информацией между людьми используются языки. За время развития человеческого общества таких языков возникло очень много. Прежде всего, это родные языки (русский, татарский, английский и др.)» на которых говорят многочисленные народы мира. Роль языка для человечества исключительно велика. Без него, без обмена информацией между людьми было бы невозможным возникновение и развитие общества.

Информационные процессы характерны не только для живой природы, человека, общества. Человечеством созданы технические устройства — автоматы, работа которых также связана с процессами получения, передачи и хранения информации. Например, автоматическое устройство, называемое термостатом, воспринимает информацию о температуре помещения и в зависимости от заданного человеком температурного режима включает или отключает отопительные приборы.

Деятельность человека, связанную с процессами получения, преобразования, накопления и передачи информации, называют информационной деятельностью.

Тысячелетиями предметами труда людей были материальные объекты. Все орудия труда от каменного топора до первой паровой машины, электромотора или токарного станка были связаны с обработкой вещества, использованием и преобразованием энергии. Вместе с тем человечеству пришлось решать задачи управления, задачи накопления, обработки и передачи информации, опыта, знания, возникают группы людей, чья профессия связана исключительно с информационной деятельностью. В древности это были, например, военачальники, жрецы, летописцы, затем — ученые и т. д.

Однако число людей, которые могли воспользоваться информацией из письменных источников, было ничтожно мало. Во-первых, грамотность была привилегией крайне ограниченного круга лиц и, во-вторых, древние рукописи создавались в единичных (иногда единственных) экземплярах.

Новой эрой в развитии обмена информацией стало изобретение книгопечатания. Благодаря печатному станку, созданному И. Гутенбергом в 1440 году, знания, информация стали широко тиражируемыми, доступными многим людям. Это послужило мощным стимулом для увеличения грамотности населения, развития образования, науки, производства.

По мере развития общества постоянно расширялся круг людей, чья профессиональная деятельность была связана с обработкой и накоплением информации. Постоянно рос и объем человеческих знаний, опыта, а вместе с ним количество книг, рукописей и других письменных документов. Появилась необходимость создания специальных хранилищ этих документов — библиотек, архивов. Информацию, содержащуюся в книгах и других документах, необходимо было не просто хранить, а упорядочивать, систематизировать. Так возникли библиотечные классификаторы, предметные и алфавитные каталоги и другие средства систематизации книг и документов, появились профессии библиотекаря, архивариуса.

В результате научно-технического прогресса человечество создавало все новые средства и способы сбора, хранения, передачи информации. Но важнейшее в информационных процессах — обработка, целенаправленное преобразование информации осуществлялось до недавнего времени исключительно человеком.

Вместе с тем постоянное совершенствование техники, производства привело к резкому возрастанию объема информации, с которой приходится оперировать человеку в процессе его профессиональной деятельности.

Развитие науки, образования обусловило быстрый рост объема информации, знаний человека. Если в начале прошлого века общая сумма человеческих знаний удваивалась приблизительно каждые пятьдесят лет, то в последующие годы — каждые пять лет.

Выходом из создавшейся ситуации стало создание компьютеров, которые во много раз ускорили и автоматизировали процесс обработки информации.

Первая электронная вычислительная машина «ЭНИАК» была разработана в США в 1946 году. В нашей стране первая ЭВМ была создана в 1951 году под руководством академика В. А. Лебедева.

В настоящее время компьютеры используются для обработки не только числовой, но и других видов информации. Благодаря этому информатика и вычислительная техника прочно вошли в жизнь современного человека, широко применяются в производстве, проектно-конструкторских работах, бизнесе и многих других отраслях.

Компьютеры в производстве используются на всех этапах: от конструирования отдельных деталей изделия, его дизайна до сборки и продажи. Система автоматизированного производства (САПР) позволяет создавать чертежи, сразу получая общий вид объекта, управлять станками по изготовлению деталей. Гибкая производственная система (ГПС) позволяет быстро реагировать на изменение рыночной ситуации, оперативно расширять или сворачивать производство изделия или заменять его другим. Легкость перевода конвейера на выпуск новой продукции дает возможность производить множество различных моделей изделия. Компьютеры позволяют быстро обрабатывать информацию от различных датчиков, в том числе от автоматизированной охраны, от датчиков температуры для регулирования расходов энергии на отопление, от банкоматов, регистрирующих расход денег клиентами, от сложной системы томографа, позволяющей « увидеть» внутреннее строение органов человека и правильно поставить диагноз.

Компьютер находится на рабочем столе специалиста любой профессии. Он позволяет связаться по специальной компьютерной почте с любой точкой земного шара, подсоединиться к фондам крупных библиотек не выходя из дома, использовать мощные информационные системы — энциклопедии, изучать новые науки и приобретать различные навыки с помощью обучающих программ и тренажеров. Модельеру он помогает разрабатывать выкройки, издателю компоновать текст и иллюстрации, художнику — создавать новые картины, а композитору — музыку. Дорогостоящий эксперимент может быть полностью просчитан и имитирован на компьютере.

Разработка способов и методов представления информации, технологии решения задач с использованием компьютеров, стала важным аспектом деятельности людей многих профессий.

Список литературы

Для подготовки данной работы были использованы материалы с сайта https://referat.ru

Дата добавления: 04.09.2008

www.km.ru

Ликбез по процессорам

Сразу скажу, что данная статья рассчитана на неискушенного пользователя ПК. Технически подкованный читатель вряд ли откроет для себя что-то новое. Перед вами своеобразный ликбез по современным центральным процессорам (далее по тексту просто “процессоры”) для настольных компьютеров и ноутбуков. Не вдаваясь в технические детали, я расскажу вам об основных параметрах, на которые стоит обратить внимание при выборе “шасси” для своего ПК.

Первым коммерческим однокристальным микропроцессором стал чип, выпущенный в 1971 году под маркой Intel 4004. С тех пор много воды утекло, и сегодня в индустрии процессоров для персональных компьютеров можно выделить двух основных игроков: Intel Corporation – ~84% доли рынка, и Advanced Micro Devices Inc. – ~10% доли рынка (данные за 2011 год).

Традиционно AMD находятся на вторых ролях, выступают в роли догоняющих, хотя, скажу откровенно, были моменты, когда решения от Advanced Micro Devices смотрелись куда привлекательнее Intel’овских.

Аналоги процессоров от AMD всегда стоят дешевле, но чуть больше греются и показывают чуть меньше “попугаев” в бенчмарках. По большому счету преимущество Intel скорее психологическое (потребители привыкли думать, что Intel круче) и позиционное: из-за большей доли в потребительском и профессиональном рынках – любое новое оборудование или программа прежде всего оптимизируется под процессоры от Intel.

Все же в статье при описании параметров и характеристик современных процессоров я не буду привязываться к решениям той или иной компании.

Сокет (Socket)

Первый параметр, который вы должны учесть при выборе процессора – это Сокет (Socket). Сокет – это по сути разъем для подключения процессора к материнской плате. Разные Сокеты – это разное количество контактов и габариты площадки под процессор. Соответственно, процессоры и сокеты разных ревизий будут несовместимы.

Например актуальным Сокетом для Intel на сегодня являются LGA1155, а для AMD – AM3 и AM3+.

Тактовая частота

Тактовая частота – это количество импульсов в секунду, подаваемых на процессор извне. Онахарактеризует производительность процессора, т.е. количество выполняемых операций в секунду. Однако процессоры с одной и той же тактовой частотой могут иметь различную производительность, так как на выполнение одной операции разным процессорам может требоваться различное количество тактов (обычно от долей такта до десятков тактов), а кроме того, процессоры, использующие конвейерную и параллельную обработку, могут на одних и тех же тактах выполнять одновременно несколько операций.

Тактовая частота процессора – самый “боянистый” показатель среди всех характеристик процессоров. И по сей день школьники всего мира частенько меряются письками частотой процессора, пытаясь доказать превосходство своей настольной системы над настольной системой товарища. Да, среди двух одинаковых процессоров бОльшую производительность будет иметь тот, у которого тактовая частота выше, но среди двух процессоров разных типов\классов\моделей процессор с бОльшей тактовой частотой не обязательно будет более производительным. Все же, чем выше данный показатель для отдельно взятого процессора, тем выше его производительность и тем лучше для нас, пользователей.

Частота системной шины

Системная шина или Front Side Bus (FSB) – это шина, обеспечивающая соединение между процессором и системным контроллером (“northbridge” – англ. “северный мост”). Северный мост – это чип, который координирует работу трех наиболее производительных подсистем ПК: процессора, оперативной памяти и дискретной видеокарты.

Таким образом, частота системной шины – это частота, с которой передаются данные между процессором и чипсетом. Соответственно, чем выше данный показатель, тем лучше, но все же этот показатель должен быть пропорционален производительности процессора и других подсистем ПК. Иначе говоря, частота системной шины должна как бы “поспевать” за процессором и оперативной памятью.

Количество ядер

Прежде всего надо дать определение тому, что такое многоядерный процессор. Многоядерный процессор – это процессор, содержащий два и более вычислительных ядра на одном процессорном кристалле или в одном корпусе. Т.е. упрощенно в одном процессоре мы получаем две схемы обрабатывающих два и более параллельных потока информации. Или по другому: за один такт многоядерный процессор, в отличии от одноядерного, сделает несколько операций.

На сегодняшний день освоено производство 8-ядерных процессоров для домашних компьютеров, и 16-ядерных для серверных систем. А современные операционные системы такие как Windows7 и MacOS X 10.7(Lion) в полной мере используют возможности многоядерных процессоров и многопоточных вычислений.

Очевидно, что чем больше ядер в процессоре, тем выше производительность. Но не стоит думать, что последняя увеличивается кратно количеству ядер – это не так. Обычно прирост производительности многоядерных процессоров в сравнении с одноядерными варьируется от нескольких процентов до нескольких десятков процентов.

Кэш (Cache)

Кэш – это сверхбыстрая припроцессорная память, содержащая информацию, которая может быть запрошена с наибольшей вероятностью. Доступ к данным в кэше происходит значительно быстрее чем к оперативной памяти или жесткому диску. За счет этого уменьшается среднее время доступа, и увеличивается общая производительность системы.

В большинстве современных процессоров есть три уровня кэша:

L1 cache – самый быстрый кэш. Кэш первого уровня является неотъемлемой частью процессора, он примыкает к функциональным блокам и, как правило, делится на кэш команд и кэш данных.

L2 cache – второй по быстродействию кэш. В современных многоядерных процессорах у каждого ядра есть свой кэш второго уровня. При этом если, например, на упаковке четырехядерного процессора написано что L2 cashe – 1Mb, это значит, что на каждое ядро приходится 1Mb / 4ядра = 0,25Mb кэша.

L3 cashe – наименее быстрый кэш, но при этом может иметь внушительный объем, от нескольких Mb до нескольких десятков Mb. В многоядерных процессорах кэш третьего уровня находится в общем пользовании у всех ядер и предназначен для синхронизации данных раздельных L2 cache.

Чем больше объем кэшей второго и третьего уровней, тем выше производительность процессора. Зачастую одним из важнейших отличий бюджетных процессоров от процессоров средней и верхней ценовой категории является урезанный объем cache L2 и L3.

Рекомендуется при выборе процессора внимательно отнестись к такому показателю, как объем кэшей L2 и L3.

Техпроцесс

В обиходе под термином “техпроцесс” чаще всего подразумевают разрешающую способность фотолитографии при производстве процессоров. Например, “техпроцесс: 32нм” означает, что наименьший элемент схемы может иметь линейные размеры ~32нм.

Чем совершеннее (меньше) техпроцесс, тем меньше линейный размер транзистора, и следовательно, меньше потребляемая мощность и тепловыделение. К тому же на одном кристалле можно разместить бóльшее количество транзисторов. Кроме того можно увеличить тактовую частоту процессора и при этом сохранить надежность системы в целом.

Выбор процессора для настольной системы последнее время стал довольно тривиальной задачей. Зачастую мощность процессора пропорциональна розничной цене. И, если хоть сколько-нибудь озаботиться выбором, достаточно лишь прочесть на тематических ресурсах пару тройку обзоров процессоров, находящихся в заданной ценовой категории. Но не смотря на это очень желательно, и я убежден в этом, иметь базовое представление о характеристиках современного центрального процессора. Надеюсь, данная статья читалась легко, и это самое базовое представление ты, читатель, получил!

mygadget.su

Как выбрать процессор — критерии и характеристики - Заметки Сис.Админа

Доброго времени суток и моё почтение, уважаемые читатели, посетители, мимопроходящие личности и.. вообще все, кто читает эти строки.

Многие из нас хотят всегда иметь под рукой адекватную компьютерную железку хорошего качества и мощной мощности, да еще и по доступной цене. Однако, несмотря на наши хотелки, далеко не все (я бы даже сказал, единицы) способны с ходу назвать все основные критерии выбора того или иного компонента компьютера. И если с видеокартой и монитором еще вроде кое-как справляются, то когда речь заходит про мозг всего и вся, а именно, центральный процессор, то вот здесь-то и начинается абсолютная засада.

Поэтому мы в очередной раз (ибо, как многие помнят, были уже статьи по выбору оперативной памяти, блока питания, роутера, жесткого диска, видеокарты и много чего еще) решили протянуть руку помощи всем нуждающимся и рассказать о том, как правильно выбрать процессор, а именно, что же нужно знать, на что обращать внимание, какие характеристики есть и всё такое прочее.

В общем, сегодня нас ждет статья из серии: «Хочу купить процессор, но не знаю на что обращать внимание.. Подскажете?».

Короче говоря, рассаживайтесь поудобней и.. Поехали!

Как я и говорил, статья будет максимально практической, поэтому не будем долго разглагольствовать по поводу, что такое ЦП и для чего он нужен, а сразу же рванем с места в карьер. Мы уже как-то затрагивали процессорную тематику в таких статьях, как [Intel или AMD. Проблематика выбора] и [Тактовая частота или количество ядер?], однако от читателей постоянно сыплются вопросы, мол, выдайте четкое руководство, что и как нужно покупать.

А так как проект, так сказать, социальный (учитываем «хотелки» посетителей), то недолго думая решили освятить сей вопрос максимально подробно.

Примечание: Очень часто приходится сталкиваться с ситуацией, когда пользователи покупают разные навороченные и дорогие железки в надежде, что все сразу полетит и забегает, а вот процессору не уделяют должного внимания, после чего тот тормозит всю систему, ибо просто не может обеспечить всей необходимой прыти и шустрости всем остальным работающим подсистемам и комплектующим..

..Посему знание основных параметров необходимо в первую очередь для того, чтобы оценить реально возможную вычислительную производительность будущей системы. Получается, что ориентируясь в характеристиках процессора, Вы сможете максимально полно раскрыть потенциал всех компонентов Вашего компьютерного собрата.

Собственно, вот с чем предстоит определиться при выборе процессора:

  • Бренд производителя (Intel или AMD);
  • Тех.процесс производства;
  • Маркировка и архитектура;
  • Платформа CPU или тип разъема (cокет);
  • Тактовая частота процессора;
  • Разрядность;
  • Количество ядер;
  • Многопоточность;
  • Кэш-память;
  • Энергопотребление и охлаждение;
  • Фирменные прибамбасы технологии.

Начнем по порядку.

к содержанию ↑

Производители процессоров: Intel vs AMD?

Первое, с чем надо определиться, так это, конечно, с производителем процессора.

Здесь был большой текст, но я его вырезал, ибо моё, Sonikelf'а, личное мнение всё еще совпадает с написанной мной же статьей.

к содержанию ↑

Тех.процесс и как участвует в выборе

Очень часто про этот параметр просто забывают, однако от него, бывает, зависит производительность. Для того, чтобы изготовить микросхемы и кристаллы CPU используется метод фотолитографии – нанесение на кремниевую подложку специальным оборудованием проводников, изоляторов и т.п., которые и формируют само ядро процессора.

В зависимости от разрешающей способности этого оборудования формируется определенный тип технологического процесса производства. Чаще всего он указывается в нанометрах: 130 нм, 90 нм, 45 нм и т.п. На что влияет техпроцесс и почему он важен при выборе CPU? Все очень просто, чем меньше цифра, тем меньше размеры структур, которые помещаются на подложку. Все это приводит к пониженному энергопотреблению процессорных ядер, их большей вычислительной мощности, а также к снижению общей стоимости ЦП.

Вывод. Чем меньше число в индексе технологического процесса, тем более высокопроизводительный и менее затратный (в сравнении со старшими собратьями) получается процессорный чип. Однако не стоит сильно обольщаться, пока эту «дешевизну» нового техпроцесса сможет ощутить конечный потребитель, пройдет немало времени.

Маркировка, архитектура и код name Все производимые процессоры обладают специальной маркировкой, которая указывает на их принадлежность к определенному семейству (архитектуре) и основные характеристики. Ниже мы подробней и наглядней рассмотрим некоторые маркировки, чтобы Вы могли легко их читать и понимать всю заложенную в них информацию. Если по-простому, то архитектура – это набор инструкций и свойств, присущих не одной конкретной модели, а целому семейству микрочипов. Она определяет конструктивные особенности и организацию процессоров.

Архитектурам практически всегда присваивается код-name, т.е. кодовые имена, которые позволяют уже только по названию определить, в каком году была выпущена та или иная архитектура и какие характеристики заложены в моделях этой линейки.

Примечание: Например, Intel имеет такие архитектуры для Core 2 Duo (архитектура Конрой): Lynnfield, Nehalem и т.п. AMD: Piledriver, Bulldozzer, Trinity.

Вывод. Если есть возможность пощупать процессор ручками, то уделите внимание его маркировке на лицевой стороне. Там можно найти массу дополнительной информации, неуказанной на коробке.

к содержанию ↑

Сокет или тип разъема процессора

Процессор устанавливается в специальный раздел на материнской плате – гнездо или, как его называют, Socket (сокет). Условно можно сказать, что это срок жизни Вашей платформы или потенциал возможного развития на будущее. Номер сокета, т.е. его модель (например, Socket 775) должен совпадать с номером сокета на мат.плате, иначе установить процессор на неё не получится.

Очень часто можно столкнуться с ситуацией, когда люди пытаются сэкономить на разъеме процессора, т.е. они изначально покупают морально устаревший процессор и мат.плату, вышедшие в тираж уже довольно давно. Это плохо тем, что как только появятся новые стандарты и новый тип разъема, то, скорее всего, под старый уже не будут выпускать новые, более мощные процессоры, т.е. Вы будете ограничены в возможности апгрейда компьютера и при желании его улучшить придется менять не только процессор, но и мат.плату.

Примечание: Сокет процессора и сокет материнской платы должны совпадать, иначе просто ничего работать не будет.

Впрочем, не всё всегда так критично, ибо, например, у AMD более гибкая политика в отношении этого вопроса. Компания даёт возможность провести безболезненный для кошелька апгрейд путем поддержки совместимости новых платформ со старыми. У каждого производителя имеются свои типы сокетов. Основными из новых и условно-новых, скажем, для Intel считаются LGA 2011, LGA 1155, LGA 775 и LGA 1156, причем два последние уже практически «канули в лету». У AMD самыми ходовыми являются разъемы AM3, Socket AM3+ и Socket FM1.

Самый простой способ отличить процессор Intel от AMD – это посмотреть на них и запомнить, что изделия от AMD всегда имеют на задней поверхности множество штырьков-контактов, с помощью которых они и вставляются в разъем материнской платы. Intel же с некоторых пор, в свою очередь, использует другое решение – контактные ножки находятся внутри разъема самой материнской платы.

Вывод. Сокет процессора и материнской платы должны совпадать или быть обратно совместимы.

Тактовая частота процессора Самый известный параметр оценки производительности процессора – это количество производимых операций/вычислений в единицу времени (измеряется в Гц). Например, если говорится, что процессор имеет тактовую частоту равную 3,4 ГГц, то это значит, что он за одну секунду производит обработку 3 миллиардов 400 миллионов тактов (интервал выполнения операции).

Процессоры Intel и AMD имеют разные частоты, однако в целом «камни» (процессоры) нередко показывают одинаковую производительность. Многие считают, что только тактовая частота однозначно характеризует мощность процессора, и, значит, чем она выше, тем быстрее компьютер и всё тут. Однако это не совсем так. Важную роль играют все составляющие, например, такой параметр, как скорость работы оперативной памяти, разрядность шины передачи данных и прочее. В идеале все компоненты компьютера должны работать, так сказать, «в унисон».

Вывод. Тактовая частота - важный параметр производительности, однако далеко не единственный, поэтому не стоит гнаться только за ним.

Разрядность Также является одной из важнейших характеристик производительности процессора и показывает количество бит, обработанных процессором за один такт.

На текущий момент самый высокий показатель разрядности CPU - 128, однако на потребительском рынке такие модели крайне мало распространены, а вот 32 и 64 бита – самые ходовые.

Примечание: Разрядность процессора должна поддерживаться ОС, в частности, например, Windows 8 способна работать с 128-разрядными ЦП.

Многие пользователи при покупке путаются в маркировке разрядности 32- и 64-битный «камней», поэтому здесь следует запомнить, что разрядности 86 бит не бывает, ибо такой маркировкой («х86») обозначаются 32-разрядные процессоры. Если разрядность 64 бита, то процессор маркируются как, например, AMD64 или х64.

В одной из статей, в частности в этой [Что такое разрядность?], мы говорили в чем отличие разрядностей. В самом общем случае следует запомнить, что 32-битная архитектура не поддерживает больше 3,75 Гб оперативной памяти, так что учитывайте это при апгрейде процессора.

Вывод. При покупке обращайте внимание на разрядность процессора, лучше выбирать 64-битный CPU.

Количество ядер Некое, совсем небольшое, количество лет назад такого понятия как многоядерность не существовало вовсе. Сейчас же, «куда ни плюнь», сплошь многоядерные процессоры. В выборе количества ядер следует в первую очередь исходить из конкретных задач.

Понятно, что чем больше ядер, тем лучше, но если Вы используете компьютер для решения офисных задач по работе с документами, серфинга в интернете и легких мультимедийных задач, то, скорее всего, процессор с количеством ядер больше двух - это выброшенные на ветер деньги.

Вывод. «Ядреность» процессоров призвана в первую очередь повысить производительность при работе со специально оптимизированным софтом, играми и приложениями. Поэтому, если Вы «штатный» юзер с минимальными целями и задачами, то смысла переплачивать за количество ядер – нет. Оптимальным вариантом будет: 2 ядра – для стандартного офисного ПК (эдакой рабочей лошадки) и 4 и более ядра – если Вы хотите использовать ПК в качестве мультимедийного и игрового центра.

Многопоточность Часто многие путают такие понятия как многопоточность и многоядерность, однако это совершенно разные вещи. Многопоточность – это способность платформы (ОС, программы, приложения) работать в несколько потоков, выполняющихся параллельно. Для раскрытия всего потенциала многоядерных процессоров им необходима работа с многопоточными приложениями. К таким приложениям можно отнести: архиваторы, кодировщики видео, дефрагментаторы, браузеры, flash и пр.

Из ОС к «любителям» многопоточности можно отнести Windows 8, Windows 7 и различные Linux-системы.

Вывод. Многопоточность зависит от оптимизации платформы разработчиком. Сейчас все больше игр и приложений достойно поддерживают эту способность. Однако не факт, что стоит искать в прайсах на процессоры этот параметр.

Кэш-память Помимо оперативной памяти существует сверхбыстрая кэш-память, с которой и работает кристалл процессора, ибо он не может ждать, пока ОЗУ «раскачается» и выполнит требуемые операции.

Кэш-память – это область процессорного кристалла, в которой обрабатываются и хранятся промежуточные данные между процессорными ядрами, оперативной памятью и другими шинами. Другими словами – это сверхбыстрый энергозависимый буфер, позволяющий быстро получить доступ к часто используемым данным.

Кэш-память имеет трехуровневую организацию (хотя некоторые процессоры имеют только 2):

  • L1 – кэш первого уровня. Самый маленький (по объему, 16—128 Кбайт) и очень быстрый, зачастую он работает на частоте самого CPU. Имеет высокую пропускную способность и процессорные ядра работают с ним напрямую.
  • L2 – медленней, но больше чем L1 по объему.
  • L3 – самый объемный кэш (от 6 до 16 Мб).

В целом основная задача разработчиков (в отношении кэша) – это определение его оптимальных размеров для выпускаемого процессора. Ведь именно от этого зависит прирост производительности в определенных приложениях. Любая кэш-память снабжена системой защиты от возможных ошибок (ECC), при обнаружении которых последние автоматически исправляются.

Вывод. Если Вы страстный поклонник хорошей графики, компьютерных игр и мощных видеоподсистем с двумя видеокартами, то выбирайте процессор с большим объемом кэш-памяти третьего уровня (16 Мб и выше). Во всех остальных случаях вполне достаточно будет процессора с почти любым объемом сверхбыстрой памяти.

Ну вот и закончили мы с техническими параметрами, теперь рассмотрим некоторые, так сказать, фишки..

Энергопотребление и охлаждение Конечно же развитие производственных мощностей процессоров не могло не отразиться на их энергопотреблении, которое существенно возросло. Если раньше можно было спокойно обойтись «комплектным» вентилятором, то теперь для отвода тепла необходимы специальные системы охлаждения (см. изображение).

Для оценки же тепловыделения была введена величина TDP, которая показывает, на отвод какого количества тепла должна быть рассчитана система охлаждения, при использовании ее с определенной моделью CPU. В настоящий момент, эпоху развития портативных устройств (планшетов, нетбуков и т.п.) параметр энергопотребления, за счет тех.процесса и тп, удалось существенно снизить. Так, например, TDP процессоров мобильных решений компьютеров составляет всего 40 Вт.

Информация по выбору системы охлаждения для Вашего процессора была в статье "Как правильно выбрать вентилятор (кулер) для процессора".

Вывод. Если Вы сторонник всяких ноутбуков и подобных портативных устройств, то на TDP и всякие там вентиляторы не стоит обращать особого внимания - там и так всё за Вас уже рассчитано и установлено. Если же Вы хотите собрать высокопроизводительную настольную систему, то нужно брать серьезную «охлаждалку».

Встроенное графическое ядро С развитием техпроцесса производства процессоров появилась возможность размещать внутри ЦПУ различные микросхемы, в частности графическое ядро. Удобно такое решение тем, что не требуется покупать отдельную видеокарту. Ориентировано оно в основном на бюджетный сектор (офисную среду), где графические возможности системы вторичны. AMD встраивает в свои вычислительные процессоры видеочипы Radeon HD, такой единый элемент получил название APU (ускоренный процессорный элемент).

Вывод. Если Ваша цель - бюджетный компьютер, в котором графика не играет важной роли (ну, не играете Вы в мощные игры, не занимаетесь 3D-дизайном и тд и тп, а просто смотрите фильмы, лазаете по инету и тд и тп), то тогда гибридный процессор со встроенным видеоядром – это то что доктор прописал, так сказать дешево и сердито. Если же Вам нужны видеомощности, то, само собой, нет смысла тратится на процессор с видеоядром - лучше купить отдельную мощную видеокарту.

Всякие там фирменные технологии За столь долгое время существования процессоров, их производители обзавелись своими «примочками» - дополнительными функциями, ускоряющими и расширяющими вычислительные мощности CPU. Например, вот некоторые из них.

От AMD:

  • 3DNow!, SSE (инструкции) – ускорение работы в мультимедиавычислениях;
  • AMD64 – работа с 64-битными инструкциями, а также с 32-битными архитектурами;
  • AMD Turbo Core – аналог Intel Turbo Boost;
  • Cool’n'Quiet – снижение энергопотребления за счет уменьшения множителя и напряжения на ядре.

От Intel:

  • Hyper Threading (гиперпоточность) – создание для каждого физического ядра по два виртуальных (логических), вычислительных;
  • Intel Turbo Boost – повышение частоты ЦП в зависимости от загруженности ядер;
  • Intel Virtualization Technology – запуск нескольких ОС одновременно без потери производительности.

Вывод. Конечно дополнительные «ништяки» в виде фирменных технологий – это не то, на чем стоит базироваться при выборе ЦП, однако приятным бонусом получить их бесплатно Вам никто не мешает, главное определиться, что необходимо.

Итак, последнее на сегодня, это…

Маркировка ЦП Весьма важно уметь читать и правильно истолковывать маркировку процессора, ибо магазины бывают разные, продавцы – не всегда честные, а вот выложить лишние N-тысяч рублей за непонятный «камень» вряд ли кому-то хочется, а посему важно уметь читать маркировку процессора. Давайте разберем ее на конкретном примере, допустим, для производителя AMD.

В общем виде маркировку от AMD (для поколения Family 10h) можно представить в следующем виде (см. изображение):

Расшифровка будет следующей:

Марка процессора (1). Возможны следующие символы:

  • A – AMD Athlon;
  • H – AMD Phenom;
  • S – AMD Sempron;
  • O – AMD Optheron.

Назначение процессора (2). Варианты:

  • D – desktop – для рабочих станций или настольных ПК;
  • E – embedded server – для выделенных серверов;
  • S – server – для серверов.

Модель процессора (3). Возможны обозначения:

  • Е – энергоэффективные процессоры;
  • Х – заблокированный множитель;
  • Z – разблокированный множитель.

Тепловой пакет и класс системы охлаждения (4). Данные берутся из таблицы (см. изображение):

Корпус процессора (5). Данные берутся из таблицы (см. изображение).

Количество ядер (6). Значения от 2 до С (12).

Объем кэш-памяти (7). Данные из таблицы (см. изображение).

Ревизия процессора или степпинг (8). Данные из таблицы (см. изображение).

Итак, на основании данных таблицы можно легко определить, что перед нами за процессор, допустим, судя по модели ниже (см. изображение), перед нами..

..процессор AMD с маркировкой HDZ560WFK2DGM, которая означает:

  • H – CPU семейства AMD Phenom;
  • D – назначение: рабочие станции/настольные ПК;
  • Z560 – модельный номер процессора 560 (Z - со свободным множителем);
  • WF – TDP до 95 Вт;
  • K – упакован процессор в корпус 938 pin OµPGA (Socket AM3);
  • 2 – общее количество активных ядер;
  • D – объем кэш-памяти L2 512 КБ и объем кэш-памяти L3 6144 КБ;
  • GM - ядро процессора степпинга C3.

Вот так, зная учетные данные таблиц, можно легко вычислить, что перед Вами за экземпляр.

Собственно, это все, что хотелось бы рассказать. Думаю, что информация окажется для Вас полезной и пригодится еще не один раз.

к содержанию ↑

Где лучше всего купить процессор?

В первую очередь рекомендуем три магазина, примерно с равной степенью качества:

  • JUST - пожалуй, лучший выбор с точки зрения соотношения цена-качество. Вполне внятные цены, хотя ассортимент не всегда идеален с точки зрения разнообразия. Ключевое преимущество, - гарантия, которая действительно позволяет в течении 14 дней поменять товар без всяких вопросов, а уж в случае гарантийных проблем магазин встанет на Вашу сторону и поможет решить любые проблемы. Автор сайта пользуется им уже лет 10 минимум (еще со времен, когда они были частью Ultra Electoronics), чего и Вам советует;
  • 003 - огромный ассортимент и выбор чего бы то ни было, хотя цены раз на раз не приходятся. Ключевое преимущество, - большой охват зоны доставки по России, т.е сделать заказ можно фактически куда угодно, что порой очень очень выручает (особенно в городах, где некоторые позиции днём с огнём не найдешь);
  • OLDI - один из старейших магазинов на рынке, как компания существует где-то порядка 20 лет. Приличный выбор, средние цены и один из самых удобных сайтов. В общем и целом приятно работать.

Выбор, традиционно, за Вами. Конечно, всякие там Яндекс.Маркет'ы никто не отменял, но из хороших магазинов я бы рекомендовал именно эти, а не какие-нибудь там МВидео и прочие крупные сети (которые зачастую не просто дороги, но ущербны в плане качества обслуживания, работы гарантийки и пр).

к содержанию ↑

Послесловие

Сегодня мы максимально подробно выяснили, как правильно выбирать процессор и на что можно обращать внимание при его покупке. Информация довольно специфичная и технически, возможно, для некоторых непростая и непривычная, поэтому если чего-то не усвоили, то перечитайте еще раз, а потом еще, после чего откройте прайс и попробуйте сделать несколько вариантов выбора процессоров под разные нужды.. Потом снова перечитайте, потом снова выберите.. В общем и так по кругу, пока не набьете руку :)

Мы же свою благую миссию выполнили, значит, пришла пора прощаться на некоторое время. Как и всегда, если есть какие-то вопросы, дополнения, благодарности и всё такое прочее, то смело пишите комментарии.

P.S. За существование данной статьи спасибо члену команды 25 КАДР

sonikelf.ru


Смотрите также